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J. Phys. A: Math. Gen. 15 (1982) L699-L703. Printed in Great Britain 

LETTER TO THE EDITOR 

Study of droplets for correlated site-bond percolation in 
two dimensions 

N Jan?, A Conigliot and D StaufferS 
Center for Polymer Studiesll, Boston University, Boston MA 02215, USA 

Receivd 11 August 1982 

Abstract. We study the droplet size distribution of the correlated site-bond percolation 
model introduced by Coniglio and Klein, and also the usual clusters of two-dimensional 
king models near the critical point. Equilibrium configurations of the Ising model with 
nearest-neighbour interaction and also one with nearest- and next-nearest-neighbour 
interactions are generated through a Monte Carlo simulation, and then a cluster analysis 
is performed. The exponents 0 and y for the Coniglio-Klein droplet distribution are 
found to agree, for both the nearest-neighbour and the next-nearest-neighbour model, 
with the corresponding exponents of the king model. The usual king clusters diverge 
only at T, in the Ising model with nearest-neighbour interaction but not for the model 
with next-nearest-neighbour interaction. The Potts model formulation is used to predict 
the behaviour of the droplet for general further-neighbour interactions. 

Droplet models (Fisher 1967, Kert6sz et a1 1982) have been important in understand- 
ing critical phenomena and metastability. One fundamental problem is how to define 
a droplet which will diverge with the correct exponents at the critical temperature. 

As an example, consider a ferromagnetic spin-; Ising model with nearest-neighbour 
(NN) interaction J. A naive definition of droplets is a cluster made up of NN ‘up’ spins 
which we shall call Ising clusters. However, for three dimensions the mean size of the 
Ising clusters diverge for zero magnetic field H = 0 at a temperature below the critical 
temperature T, (Muller-Krumbhaar 1974). In two dimensions, on the other hand, 
they diverge right at T,. Sykes and Gaunt (1976), using series expansions, found the 
mean cluster size exponent yp = 1.91 f 0.01 to be larger than the corresponding 
susceptibility exponent y = 1.75 in two dimensions. Renormalisation group arguments 
(Coniglio and Klein 1980) give vp = v = 1 for the connectedness length exponent vp, 
identical with the Ising correlation length exponent v. Recently Coniglio and Klein 
(1980, henceforth abbreviated as CK) suggested that a candidate for a ‘droplet’ is 
better defined as a cluster of NN ‘up’ spins connected by bonds which are activated 
with probabilitypB = 1 - exp(-2J/kBT). These we call CKdroplets. Coniglio and Klein 
predict, using a Potts Hamiltonian formulation and renormalisation group arguments, 
that the CK droplets should diverge in size at the Ising critical point with the correct 
Ising exponents. Their analysis was limited to NN interactions. 
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The study of droplets in systems with further-neighbour interactions is important 
in view of the extension of these concepts to real fluids (Klein 1982) and in the light 
of studies of metastability in long-range interaction systems (Heermann et a1 1982) 
where the usual Ising cluster makes no sense at all. 

In particular we evaluate the ‘mean cluster size’ (more precisely, the second moment 
of the cluster size distribution) and the density of up-spins in the infinite cluster. 
Monte Carlo results for the simple cubic lattice have been obtained previously (see 
KertCsz et a1 1982 for a review); and a study for the square lattice was made by Ottavi 
(198 1). 

The computer analysis consisted of two parts: the production of Ising equilibrium 
configurations; and the subsequent cluster analysis for such a configuration. The 
generation of the equilibrium configurations of the two-dimensional Ising lattice is 
made through standard Monte Carlo techniques with efficient multi-spin coding (Zorn 
et a1 1981). Then clusters are counted by the Hoshen-Kopelman algorithm (see 
Stauffer et a1 1982 for a computer program) applied to both the Ising clusters and 
the CK droplets. 

Ising model with N N  interactions only 

The Ising clusters diverge at the Ising critical point; thus we have generated equilibrium 
configurations for systems of various sizes at the exactly known critical point T = T, 
and H = 0, and we analysed the data by finite-size scaling (note v = 1). 

We find the magnetisation exponent p (0.135*0.025) to be compatible with the 
exact result b. The mean-cluster-size exponent is rather inaccurate (1.83 kO.1) but 
compatible with 1.91 from Sykes and Gaunt (1976). The exponent p p  related to the 
infinite cluster is about 0.052 f 0.03. We expected p p  = 0.045 as obtained from the 
scaling relation 2 p p  = 2vp  - y p  where v p  = 1 as obtained from renormalisation group 
analysis (cK). We note that our result is compatible with theoretical expectations and 
also gives some indications on the reliability of our Monte Carlo data. 

For the CK droplet we find, using the same methods, that the ratio of the density of 
the infinite droplet to the spontaneous magnetisation is constant (thus p p  = b), in 
contrast to the case of Ising clusters (figure 1). Our value y p  = 1.77h0.03 agrees 
within its .error bars with the susceptibility exponent y = f .  These results confirm 
therefore that the CK droplets are a suitable candidate to describe the thermal phase 
transitions in two dimensions. 

(a) Ising cluster analysis. 

(b) CK droplet analysis. 

k ing  model with N N  and NNN interactions 

The Ising clusters now are made up of NN and NNN up-spins. In this case even in two 
dimensions the critical point does not correspond anymore to the percolation threshold. 
In fact, for T 3 T, in zero field there is always an infinite cluster, and the mean cluster 
size does not diverge for T + T, (note that the concentration of up-spins is 50% and 
far above the random percolation threshold of 41% (Djordjevic et af 1982)) and has 
a maximum at a temperature above T,, contrary to the requirements for a good 
droplet. This feature was found in our simulations for the two cases considered here: 
J2 = J1 and J2 = ;Jl where J1 is the NN and J2 the NNN exchange energy. 

We generalise the CK droplets to the case of NN and NNN interactions, defining a 

(a) Ising clusters. 

(b) CK droplet analysis. 
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Figure 1. Square lattice Ising model with nearest-neighbour interactions only, at T = T, 
for systems of size L x L.  We plot against log&) the ratio of the density of the infinite 
cluster to the spontaneous magnetisation. The full circles which indicate a tendency to 
increase with L refer to the usual Ising clusters, the open circles which scatter about a 
constant refer to the droplets in the definition of Coniglio and Klein (1980). The statistical 
errors are less than the size of the symbols used. 

droplet as a group of up-spins connected by NN bonds activated with probability 
P1B = 1 - eXp(-zJl /k~T) or by NNN bonds activated with probability P2B = 
1 - exp(-2Jz/kBT). The extension to further-neighbour interactions is obvious and 
proven below. We expect (see below) these droplets to diverge at the Ising critical 
point with Ising exponents. This result is confirmed by our analysis of the mean cluster 
size, which is found to diverge at the king critical point with an exponent y p  (-1.65) 
compatible with y. We show the data in figure 2 where the mean cluster size is seen 
to diverge for the CK droplets but not for the king clusters. 

Potts model formulation 
Now we give a formulation for the more general site-bond correlated percolation 
problem (Coniglio et a1 1979) for further-neighbour interactions. We will only outline 
the derivations since they will be a straightforward generalisation of the Potts Hamil- 
tonian formalism employed for the case of NN interactions (see Roussenq et a1 1982 
and Kertksz et a1 1982 for details and further references). 

Consider the following asymmetric (q + 1)-state Potts model: 



L702 Letter to the Editor 

c 

Figure 2. Second moment of the cluster size distribution for 400 x 400 square lattice 
slightly above T,, with interactions to nearest and next-nearest neighbours. In the left 
part the ratio of interaction strengths is unity, in the right part it is i. The open circles 
which seem to scatter about a constant refer to the usual Ising clusters, the full circles 
which indicate the desired divergence at E = (T - T,)/T, = 0 refer to CK droplets. Note 
that T, is different for different interaction ratios J 2 / J 1  (Domb and Dalton 1966). 

where the double sums run over all pairs (not only NN pairs), S is Kronecker’s symbol, 
bi = 0, 1, . . . , 4 are the Potts model variables. Following the same procedure as for 
the NN Ising model it is possible to show that the derivative with respect to 4, in the 
limit 4 + 1, of this Hamiltonian is related to the generating function of Ising-correlated 
site-bond percolation in which the clusters are made of up-spins of the Ising model, 
connected by bonds activated with the probability p :  = 1 -exp(-J;) depending on 
the chosen pair i, j of lattice sites. The spins interact according to the Ising Hamiltonian 
with coupling constant Jij = $kBTKtj and magnetic field H (more precisely, H = field x 
magnetic moment/kBT in our notation). 

If we now choose J :  = $Kij, that means p ;  = 1 -exp(-2Jij/kBT); the above Hamil- 
tonian becomes an Ising model with exchange interaction Jij and magnetic field H 
and therefore shows Ising singularities at the Ising critical point. As a consequence, 
using the same arguments as for the NN case (Roussenq et ai 1982, Kertksz et a1 
1982) the droplets made of clusters of up-spins connected by bonds randomly with 
probability p :  = 1 -exp(-2Jij/kBT) diverge with Ising exponents at the Ising critical 
point. 

The present work continued Ottavi’s (1981) efforts and found that for the nearest- 
neighbour Ising model in two dimensions, the critical exponents of susceptibility and 
spontaneous magnetisation agree with those of the CK droplets (mean cluster size 
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and largest droplet). This analogy breaks down for the usual Ising clusters where the 
exponent p, for the largest cluster was found to be smaller than the p for the 
spontaneous magnetisation. Ising clusters are even worse for interactions over larger 
distances where they do not diverge at the critical point. But again the modified 
definition of CK droplets avoids that discrepancy. In summary, CK droplets seem to 
be the correct droplet definition, for zero field, even for more complicated cases than 
just nearest-neighbour interactions. 

We thank H J Herrmann and S Redner for comments on the manuscript. 
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